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ENHANCED ACCURACY BY POST-PROCESSING FOR FINITE ELEMENT

METHODS FOR HYPERBOLIC EQUATIONS

BERNARDO COCKBURN*, MITCHELL LUSKIN t, CttI-WANG StIU _, AND ENDRE STYLI§

Abstract. We consider the enhancement of accuracy, by means of a simple post-processing technique,

for finite element approximations to transient hyperbolic equations. The post-processing is a convolution

with a kernel whose support has measure of order one ill the case of arbitrary unstructured meshes; if the

mesh is h)cally translation invariant, the support of the kernel is a cube whose edges are of size of the order

of the mesh size only. For example, when polynomials of degree k are used in the discontinuous Galcrkin

(DG) method, and the exact sohltion is globally smooth, the DG method is of order k + 1/2 in the L'- norm,

whereas the post-processed approximation is of order 2k + 1; if the exact solution is in L 2 only, in which case

no order of convergence is availal)le for the DG method, the post-processed approximation converges with

order k + 1/2 in L-" over a subdomain on which the exact solution is smooth. Numerical results displaying

the sharpness of the estimates are presented.

Key words, post-processing, finite element methods, hyperbolic prot)lems

Subject classification. Applied and Numerical Mathenlatics

1. Introduction. In this paper, we consider general finite element methods for time-dependent linear

hyperbolic systems of the form

d

ut + E .4j Uxj + .40 u = 0, (x, t) E 1_'t x (0, T],
j=!

u(x,0) = _0(x), x _ I__,

where d{Aj}j= l are real, constant coefficient m x m matrices such that _d=l .4j_j has real eigenvalues and

a complete set of linearly independent eigenvectors for all _ E 11_d, and the function _ has range in IR".

Our aim in this paper is to show how to exploit the inherently oscillatory nature of numerical solutions to

this problem computed by means of finite element methods to enhance, the quality of the approximation.

This enhancement is achieved by post-processing the approximate solution only once, at the very end of

the computation, at t = T. The post-processing considered here is completely independent of the partial

differential equation under consideration and can be performed for entirely arbitrary triangulations; however,

it takes a particularly simple and computationally efficient form when the triangulation is locally translation

invariant.
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To illustrate tlle basic idea, let. us consider the following simple model problem:

u, + u_ = 0, in (0, 1) x (0, T), u(x, 0) = sin(2rrx) for x E (0, 1),

subject to periodic boundary conditions, and let us compute an approximation U to its solution u by using

the discontinuous Galerkin (DG) method with piecewise polynomials of degree one over uniform grids of
-4,2

spacing h. We also consider the post-processed approximation U* = ht, * U, where the convolution kernel

= is definedby: : : : ............

K4'2(y) -1¢'2)(y - 1)+ _g,(2)(y)_ 1¢/,(2,(y + 1),

where g,(2) is the B-spline obtained by convolving the characteristic function _(1) = X of the interval

(-1/2, 1/2) with itself once. Ill Fig. 1.1 we display, for T = 0.1 and h = 1/10 and h = 1/20, the er-

rors x _-_ u(T, x) - U(T, x) and x _-_ u(T, x) - U*(T, x). The time-step was chosen so small that tlw overall

accuracy of the method is dominated by the spatial error. We note the oscillator), nature of the error:.

x _ u(T, x) - U(T, x) typical of finite element methods and the apparent superconvergence of the numerical

solution at the two Gauss-Radau points, a fact discovered in 1995 by Adjerid, Aiffa, and Flaherty [2]; see

also their recent work [1]. In contrast with this behavior, we observe the complete absence of oscillations
.,| o

from the error u(T) - U*(T). This shows that convolving the approximate solution U with the kernel Kh'"

filters out tim numerical oscillations around the exact solution. Moreover, the result of such a filtering is

a new approximation U* that converges faster to u than U. Indeed, in Fig. 1.2, we display the functions

x _ ]og(I _,(T,x) - U(T,x)]), for h = 1/10, 1/20, 1/40 and 1/80; we observe that each time h is halved, tim

maximum of x _ [u(T,x) -U*(T,x)I is divided by a factor not less than eight. This indicates that the

post-processed approximation is at least, third-order convergent; the original approximate solution U exhibits

only second-order convergence.

In Figs. 1.3 and 1.4 we repeat the above experiment using polynomials of degree two. Again we observe

tlie oscillatory nature of the approximation and the superconvergenee at the three Gauss-Radau points in

Fig. 1.3 (tol)), and that the oscillations are filtered out upon convolution in Fig. 1.3 (bottom). This time,

the convolution kernel K6'3(x) = }t(6"'_(x/h) is defined by

37 ,(4)- 2) _ov_9--_7_P_'t)(Y1) _-_6_p437.(4) ;_(v .... (vJ

97 37 O(4)(y + 2),
_-0_/,(4)(y + 1) + 1920-

where ¢(4) is the B-spline obtained by convoh_ng the characteristic flmction ¢(1) = X of the interval

(-1/2, 1/2) with itself three times. In Fig. 1.4, we see that each time tt is halved, the maximum error

decreases by a factor not less than thirty two. This shows that the error in the post-processed approxima-

tion is of fifth order.

In connection witti ttiis fact, we note here that in 1996 Lowrie [16] found analytical and numerical evidence

that when polynomials of degree k are used, a 'component of the error' of the DG method converges witli

order 2 k + 1 in the L 2 norm; this fact stands in striking contrast with convergence of order k + 1/2 for

the underlying DG approximation (k + 1 for the one-dimensional case and special grids in several space

dimensions). In this paper, wc provide a firm mathematical basis for this observation, and show how to

compute the superconvergcnt approximation U* by a simple post-processing technique which is independent

of the equation and of the numerical method.
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FIG. 1.1. The errors u - U (solid line) and u - U* (dots) at T = 0.1 for h = 1/10 (top) and h = 1/20 (bottom). The

function u is the smooth exact solution, U is the approximation given by the DG method with polynomials of degree one, and

U* = h'_ '2*U.
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FIG. 1.2. The errors log(I u- U* l) at T = 0.1 for h = 1/10 (top), h = 1/20, h = 1/40, and h = ]/80 (bottom). Each time.

tt is halved, the maximum error decreases by a factor not less that 8; the order of convergence is, therefore, not less than 3.

The paper is organized as follows. In Section 2, we present a brief account of the development of the ideas

behind this paper. In Section 3, we state and discuss our main theoretical results, and in Section 4 we present

their proofs. In Section 5, we display numerical experiments which not only verify our theoretical results but

also indicate how this kind of post-processing can be applied to convection-diffusion and non-linear problems.

We conclude, in Section 6, with some remarks.

2. A brief overview of the development of post-processing techniques. In order to introduce

the basic ideas of our work and to t)ut them into proper perspective, we briefly review the development of
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FKI. 1.3. The errors u - U (solid line) and u - U* (dots) at T = 0.1 for h = 1/10 (top) and h -- 1/20 (bottom). The

function u is the smooth exact solution, U is the approximation given by the DG method with polynomials of degree two, and

U* = .6 3h h' *U.
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FIo. 1.4. The errors log(I u- U* I) at T 0.1 for It = 1/10 (top), h = 1/20, h = 1/40, and h --- 1/80 (bottom). Each time

hl iS halved, the maximum error decreases by a factor not less that 32; the order of convergence is, therefore, not less than 5.

post-processing techniques devised to improve the quality of numerical approximations. For further details,

the reader should consult the monograph of Wahlbin [21] on superconvergence in Galerkin finite element

methods.

2.1. Finite difference and spectral methods for hyperbolic problems. In 1977, Majda and

Osher [18] considered formally high-order accurate dissipative difference schemes for hyperbolic problems.

They studied a one-dirnensional model problem of a two-by-two hyperbolic system whose characteristics are

parallel to x -- +t; the initial condition is a step function whose discontinuity is located at the origin. Majda



andOshershowedthat therateof convergenceontheregionbetweenthecharacteristicsissuingfromthe
origin,]x/t 1< 1- 52, is independent of the numerical scheme. They pointed out that in 1962 Fedorenko

[11] and in 1969 Apelkrans [3] displayed numerical evidence that the order of convergence had to be one.

However, by selecting a suitable approximation of the initial datum, Majda and Osher showed that the order

of convergence can be increased to two. Moreover, they found that they could recover the full formal order

of accuracy of the scheme on the region Ix/t t < 1 - 52 provided they preprocessed the initial data in an

appropriate way. In 1986, Johnson and Pitk/iranta [14] used a similar idea in the analysis of the DG method

for linear hyperbolic problems. The question of post-processing the initial data is considered in the book

of Brenner, Thom6e and Wahlbin [5]; see also the work of Jovanovid, Ivanovid and Still [15] concerning the

use of convolution mollifiers with B-spline kernels for second-order hyperbolic boundary value problems with

non-smooth data.

In 1978, Mock and Lax [19] showed that for a difference scheme of any formal order of accuracy p, for

linear hyperbolic systems, the moments of tile exact solution converge with order p provided that, again, the

initial data was suitably preprocessed. This result holds even if the exact solution contains discontimlities.

They also showed how to post-process the approximate solution by a simple convolution to enhance its

accuracy over regions of smoothness of the exact solution: if the solution was sufficiently smooth locally,

they could obtain nearly the fllll order of convergence it provided that the support of the kernel was of order

almost one. This seems to have been the first instance when the ideas of (i) preprocessing the initial data,

(ii) obtaining error estimates for the moments, and (iii) post-processing the approximation, appear clearly

delineated.

Later, in 1985, Gottlieb and Tadmor [12], motivated by the work of Mock and Lax [19], found a spectrally

accurate post-processing kernel for spectral methods; see also the 1978 paper by Majda, McDonough and

Osher [17]. Again, the full spectral accuracy could be recovered by using a convolution; the measure of the

support of the kernel had to be of order one.

2.2. Finite element methods for elliptic problems. Quite independently of the developments

reviewed above, in 1977 Bramble and Schatz [4] considered linear elliptic problems and showed how to

post-process the finite element solution by means of a simple convolution to enhance the quality of the

approximation. They showed that the order of convergence could be doubled if tile exact solution was

locally smooth. It is important to point out that, just like Mock and Lax, Bramble and Schatz proved a

negative-order norm error estimate (an error estimate of the moments in Mock and Lax's terminology) and

then showed how to use it to enhance the approximation by a convolution. However, unlike Mock and Lax's

convolution kernel, for locally translation invariant grids the Bramble Schatz kernel has support in a cube

whose diameter is of order h only; this fact represents a considerable advantage from the computational

point of view.

Also in 1977, Thom_.e [20] extended tile work of Bramble and Schatz [4] to include superconvergence of

the derivatives and gave an elegant proof of their approximation results by using Fourier analysis.

An application of the Bramble and Schatz technique to the simulation of miscible displacement was

devised and analyzed by Douglas [9]; other applications can be found in the book of Wahlbin [21].

2.3. The main ideas. In this paper, we apply the ideas of Mock and Lax [19] and Bramble and Schatz

[4] to enhance the accuracy of finite element approximations to hyperbolic problems by post-processing.

We proceed as follows. First, we obtain an estimate of the error between the analytical solution u and the

post-processed numerical approximation U in terms of negative-order Sobolev norms of u - U. This result

does not depend on the partial differential equation under consideration or on the numerical scheme. Next,



weobtainnegative-ordernorma prioriestimatesfor theerrorbetweentheexactsolutionof a hyperbolic
problemanditsfiniteelementapproximationU. The final error estimate is then obtained by combining the

above bounds.

3. Tile results. In this section, we present and discuss our main theoretical results.

3.1. An approximation result. We begin by presenting a result that relates negative-order norm a

priori estimates of the difference between u and an arbitrary approximation U for u to L2-error estimates of

the difference between u and the post-processed counterpart U.

Let us recall the definition of a negative-order Sobotev norm on an open set ft C Rd. We denote by

IIu II0,n the standard L2-norm of u on ft. For any natural number _, we consider the norm and seminorm of

tile Sobolev space Ht(ft), defined by

{ },,2 {Nu ]]t,n = _ ]lD_ullg,, , [ u lan = __, liD°,, ]lg,n •

l_l_<e }al=#

Sobolev norms and seminorms for vector-valued flmctions from Ht(fl, R") are defined analogously and are

denoted by the same symbol as in the scalar case. We then define the negative order Sobolev norm 11"]]-g,c_,

g_> 1, by

¢(.)
lt'll- , = sup

Negative-order norms can be used to detect the oscillations of a flmction around zero. For example, for

ft = (-1, 1), g > i and u_,(x) = sin(27r Nx), a simple computation gives 11uN II-e,n = 1/(2rr N) e, indicating

that u,_, oscillates about zero in a very regular manner.

Next, we describe the type of post-processing to be considered following Bramble and Schatz [4]. X_,i_

post-process the approximate solution by convolving it with a kernel K_i_(x) = K"'e(x/H)/Hd which has to

satisfy three properties; the firsl of these is thai _h"''e has compact support. The second is that it reproduces

polynomials p of degree u - 1 by convolution, that is,

K',g,p = p.

This is the type of kernel used by Mock and Lax [19]. The kernels used by Bramble and Schatz [4] which

we shall next describe ha{'e the further property that they are linear combinations of B-splines. Let k be

the characteristic flmction of the interval (-1/2, 1/2) and let a denote the Dirac distribution concentrated

at x = 0. Then, we define recursively the functions ,g,(i) as follows:

¢(0) = 5, @,+1) = F(_), X, for n >_ 0,

and, given an arbitrary multi-index c_ = (el,. •., eta) and y = (Yl,-.., Yd) E IRd, we set

= v)(o,)(v,)...

We also set 1 = (1,..., 1). The third, and final, property of the kernels considered here is that the',' are of

the form

z,'""(v) = - "r),
_CZ d

(a.1)



where k_ 'gl E ]_. Note that since the support of K "'tx has been assumed compact, there are only finitely

many non-zero coefficients k_ 'el in this sum.

The imposition of these hypotheses is motivated by the following observations: the compactness of the

support, of the convolution kernel is advantageous from the computational point of view; the second property

ensures that. accuracy of order u is not destroyed by post-processing; tlle third property allows us to express

derivatives of the convolution with tile kernel in terms of simple difference quotients. Indeed, it is very easy

to verify that. for multi-indices c_ and fl such thatfli >_ ai for i = 1,..., d, we have

D °" (_) v) 'f, (_-_)*O_fv, (3.2)

where_'_'_])(x)= V_°/")///'_,

1 1Qd

0_:=0_...0n, d and OH,jV(Z)=-_(v(x+_Hej)--v(x-- Hej)).

This fact can then be exploited in the finite element framework, as will be seen later. We are now ready to

state an approximation result wtfich shows that local smoothness of u on the one hand and negative-order
. -J_.t'l Unorm estimates of divided differences of the error u - U on the other lead to a local bound on u - l_ H *

in the L2-norm.

T.EOeF._ 3.1 (Bramble and Schatz[4]). Let u and f be two natural numbers. Suppose, further, that

K[/fl(x) = I("JI(x/H)/H d where K "J1 is a function of compact support which reproduces polynomials of

degree I/- 1 by convolution, and which is the linear combination of B-splines, as in (3.1). Let U be a function

in L2(_l), where _, is an open set in Nd, and let 'u be a/unction in HV(_l). Let _o be an open set in ]_a

such that _o + 2supp(K_ (I) CC _1 for all H <_ Ho. Then, for H < Ho, wc have

V

II',- -If"_'_] fl * [f Ilo,no_<_ cl lu I,..n,+ CI1 C2 _ 11o71(. - u)II-t,.,,
I_,l_<t'

where C1 = _,_ez, ] k_ 'el ] and C2 depends solely on f_o, f_l, d, u, and g.

TO illustrate the importance of this result, let us assume that there exist real numbers p > 0 and a E [0, f]

such that, for all H _< Ho,

11o_'2,(_ - u)II-e,a, _ c3 h" H-". (3.3)
I_l_<t

Note that the number a measures how well it is possihle to estimate the negative-order norm of tile divided

differences of u - U. In the worst case, a = t_; this is the case treated by Mock and Lax [19]. In the finite

element framework, however, it is possible to take a to be different from f: as Bramble and Schatz [4] showed

for second-order elliptic problems.

htserting the inequality (3.3) in the inequality of Theorem 3.1, we get

I2

11-- K._/a* u IIo,no< 7 C1 I'u [.,n, + Cl C2C3 h It H -_

<_Cl max{lu I.,a,/,.!,c_c.} (H" + h" H-").

If we now define/2/to be tile solution of the equation H" = td _H -_, we obtain the following result.

COROLLAm_" 3.2. Let the hypotheses of Theorem 3.1 hold, and suppose that (3.3) is valid. Then, for

_f-I= h "/(_+_) <_ H0, we have

Ilu - g[/1 * U Ilo,n0_ Ch °",



where C = 2 CI max{l u l-,_/u!, C2 Ca} and 0 = u/(u + a).

Note that in the worst possible case, that is when a = g, this implies that

111l r-r, (1 U- 1_}_: * 'll0,_0< Ch °",

with 0 = u/(u + g) < 1. Tile only possit)ility we then have for raising the order of convergence is to hope

that the function 71 is very smooth so that we can choose u large and positive. Unfortunately, even if this

were actually possible, the support of the convolution kernel would be contained in a cube whose diameter

is of order/2t = hU/(.+e) which converges to a quantity of order one as u increases to infinity; this in turn

renders the evaluation of the convolution eomputationally inefficient.

On the other hand, in the best possible case (that is when a = 0), taking u = p would permit choosing

0 = 1,/2t = h and we would then have

r-u fl

Ilu- *_}:; *c"llo,_ao< Oh".

. -u (1

In other words, for a = 0 we obtain the same order of convergence for u - _xtl * U in the local L 2 norm

as that of the local negative-order norm error estimate in (3.3). Moreover, this is achieved by using a

convolution kernel whose support is contained in a cube whose diameter is of the order i7/ = h only; this

renders the evaluation of the convolution a Very fast computation. The examples shown in the Introduction

correspond to this case with u = p = 2k + 1, where k is the degree of polynomials in the discontinuous

Galerkin method.

3.2. Negative-order norm error estimates for finite element methods.

3.2.1. The weak solution. As stated in the Introduction, we consider the following Cauchy problem:

d

u, + __, Aju,, + Ao,,, = 0, (,, t) • _ x (0,T], (3.4)
j=l

_(_, 0) = ,,o(*), . • _a, (3.5)

To make the presentation of the ideas as simple as possible, we reduce unessential technicalities by

assuming that the matrices in the equation (3.4) are independent of time and space and by taking the initial

data to be 1-periodic in each of the coordinate directions ari, i = 1,..., d, and we seek a solution to the above

problem which is I-periodic in each coordinate direction.

We suppose that the system of equations (3.4) is strongly hyperbolic, that is, there exists a family of

real m x m matrices {S({) : _ • II_a } and a constant K > 0 such that

d

S(_)( E nj_j)S-l(e)

j=l

is a diagonal matrix for all _ • fira, and

sup (llS(_)il + IIS-1(_)11) _< K. (3.6)
I_l=l

Letting I = (0, 1) e, the weak solution, u(x, t), of (3.4) satisfies

t d
/,

(u, p)s(t) = (Uo, _(O))s +/(u, qa, + _ .4"0_o,, -A;_), dr (3.r)
o'

O j=l



for all _2 E C _ ([0, T]; Hper(ll_ d, IRm)) and t E [0, T] where .4j* is the transpose of Aj and in the above equation

and below

(t) = f u(x, t) dx.(4,

Cper(R beHere, 1 d 1Rm)Hper(_ , denotes the Sobolev space of 1-periodic functions defined as follows. Let _ d N:")

the subset of C_C(_ d , _rn ) of 1-periodic flmctions. We then define Hper(Rl a, lRm ) as the closure of C_er (ll_d , ll_rn )

for the H l (I, _rn)_norm.

It follows from (3.6) that the problem (3.7) is well posed in

Lpe_(ll_d; ]Rm ) = {f e L_oc(l_d; IR"_): f(x + a) = f(x) for all x e ll_d, a • Z d}

with respect to the norm 11-ILL2(1); see Theorem 6.3.2. on p. 219 of [13].

3.2.2. The finite element methods. Next, we describe the class of finite element approximations

to (3.4). It includes the standard Galerkin method, the Galerkin method with artificial diffusion and the

discontinuous Galerkin method. With slight modifications we could have easily included, for example, the

streamline diffusion method and the stabilized discontinuous Galerkin method; however, in order to avoid

unnecessary technical complications, we have chosen not to consider these.

Let 7j, = { K } be a regular triangulation of _d, invariant under translations by a • Z d, whose elements

K are open and have diameter ha less than or equal to h. It will be assumed throughout that each K • 7_

is contained either in I or in I1_d \ I. For a nonnegative integer k, we associate with the triangulation 7_ the

broken Sobolev space

k d. _m 2 d I_rnHp_,h(N , ) = IIKeThHk(K;N rn) C1Lper(N ; ).

For k 0, we shall write 2 d. m o d. ,,= Lp_r, h (]R , ]R ) = Hpe_,h(I_ , 1_ ). V,/e then consider two finite element sub-
1 2 d.

spaces Jt4h and ._ of Hper.h(_d; ll{rn), and the broken L2 inner product (., ")h defined on Lp_,h(II_ , IR_") x
2 d. nl

Lper, h (I_ , I_ ) by

(n; x),, = (m (3.s)
K CTh,I

whereThd={K•T: K C I}.

We define the finite element approximation U : [0, T] --+ fl4h as the solution to

(Ut (t), X)h + B(U(t), X) = O, X • N'h, (3.9)

U(0) = Ph uo, (3.10)

1 d L 2 (_d ]Rmwhere B(.,-) is a bilinear form defined on fl'th x Hpe_,h(lR ; Ilk'n), and the operator Ph : -per,-- ; ) _ fl4h

is the orthogonal projection in the norm of L 2 (I).

In Table 3.1, we describe different choices of the form B that give rise to different finite element methods;

in each of these ,_4h = J_,_,, although this need not be the case in general.

The operator .4 and the bilinear form (-, ")h that appear in Table 3.1 are defined as follows:

d

.4X = Z AJXx_ 4- AoX,
j=l

d

j=l

(.4u,x),,= Z Z
h" EThd eEOK



TABLE 3. l

Examples of finite element methods.

Method

Standard Galerkin (SG)

SG with artificial diffusion

Discontinuous Galerkin

,_h C CO

yes

yes

no

B(U, v)

(AU, 7/)i

(AU, Tt)_ + h'* (VU, Vr])_, ? _> 1,

(U,A'rj)h + (A U, 7t)h

7

where .4 • n = Alr_l + ... + Adnd, n = (hi,... ,rid) is the unit outward normal vector to/( on e C OK, and

L" is the numerical flux of the DG method defined as follows. Given an elenwnt K and a face e E OK, let us

denote by I(, C TI, the element sharing the edge e with K and denote by UK and UI,-o the traces of U on e

from K and I(¢., respectively. We compute the m ×m diagonal matrix diag(A1,..., Am) = S(n) (A-n) S -1 (n)

and set V = S-l(n)U and

I(l.),-)j if Aj > O,

_') = ((l)_-o)j otherwise.

The numerical flux is defined as follows:

= S(n) _'. (3.11)

3.2.3. The negative-order error estimate. We now give sufficient conditions for the finite element

method which ensure that, for a given time T, our approximate solution, U(T), converges with high order

in a negative-order norm over a given subdomaiu l-/0 CC I to the weak solution u(T). Given that i _> 0, we

wish to estimate

11,,(T) - U(T)[l-e,no =
(u(T) - U(T), q_)

sup
®cc_ _n.) [I,I,lit,no

We begin by considering the solution to the dual problem: Find a function _ such that ¢(-, t) is I-periodic

in each coordinate direction for all t E [0, T) and
==

d

_t + Z-4_ _j -A_)_2 = 0, in Ra x (0, T), (3.12)
j=l

cp(/, T) = ,I,(x), x E It d, (3.13)

where q) is an arbitrary function in Co_(flo).

(u(T) - U(T), ,_) = (u, _)(T) - (U, _)(T)

= (uo, _(0)) - (U, _)(T)

= (u0, _(0)) - (U, _)(0) + (U, _o) dT-

//= (_o - Ph _o, _(0)) - {(U,, _) + (U,_,)} d_-.

10



Since, by (3.9), for X: [0, T]--+ ,'_'h,

we obtain that

where

T T _0 TfO (Ut,_)dT-- fo (Ut'qP- x) dT + (Ut'x)(t7

= fo (u,, _ - x) d_-- B(U, x) dT

/oT= f0 {(u,,v- x)+ B(U,_ - x)}dT -

(u(T) - U(T), ,I,) = OM + ®_ + Oc,

OM= (uo- Phuo,_(0)),
T

oN = - f0 {(u,,_ - x) + B(U,_ - _)} dT,
T

oc = - f0 {(u,_,) - B(u,_)} d_.

B(U, _o) dr,

(3.14)

Next, we introduce some general assumptions on ,gb, and -_"h which will enable us to estimate these three

terms.

2 d. m 11_mLet _o CC fll C I, r _> 0, g >_ 1, and suppose that uo E Lper(l_ ,]_ ) N Hr(_")fll; ), where T)i'tj

denotes the domain of dependence for the set ill; see Fig. 3.1.

T

FIG. 3.1. Ezample of the domain of smoothness of u(T), flo, and of a domain f21 DD 12o and its corresponding domain

of dependence Df2j.

We adopt the following hypotheses.

(i) Approximation properties of :_4h and Ph. There exist constants p_l, su, with 0 _< PM _< _ and

0 < SM < r, and AM such that, for each function (I, in C_=(_o),

I(_o- Ph_o,_(0))l < AMh_M+*MII_oII_,v,, II* ltw,

11



where _ is the solution to the dual problem (3.12), (3.13) with the initial data • for the dual problem.

(ii) Residual. Given that U is the solution to (3.9), (3.10), there exist constants PN, SN, with 0 _< p_." _<

g and 0 _< sN < r, and AN, such that for each function _5 in C_c(f_o) there exists X E C 1 ([0, T];A,_,)

with

(U,, _ - X')h+ B(U, _ - X) at _<A_, hp'_'+_NI1u0 ll,.,va_II• IIH,,

where _ is the solution to the dual problem (3.12), (3.13) with the initial data • for the dual problem.

(iii) Consistency. Given that U is the solution to (3.9), (3.10), there exist constants so. ¢ (0, oc] and

A(:, C [0, oc) such that

1/o [(U, _ot)h - B(U, _) dt < Ac h sc ][u0 Hr,Vn_ l] _ [[*,no,

where V is the solution t.o the dual problem (3.12), (3.13) with the data • for the dual problem.

The next resuh is a trivial consequence of the decomposition (3.14) and conditions (i) - (iii).

TUEOaeM 3.3. Supposethat uo E L_,.(tRa; IRm)NHr (Dfl_; iRm ), with rio CC f_ C I, r > 0, and assume

that conditions (i) - (iii) hold. Then, for g >_ 1, we have

!1O*- U)(T) N-t,_o <- C, h" II,*o _,w,,

where s = min{pg + sM,pN + SN,SC} and C,1 = AM + AN + Ac'.

In Table 3.2 we display the parameters of the above result, for some finite element methods; for each of

the methods listed we have 3/lh = A'5, and have assumed that f_l = I (so that Dill = I also).

TABLE 3.2

The parameters of Theorem 3.3 for finite element methods using piecewise polynomials of degree k.

parameter SG SG with AD DG

Pill

8M

Px

8N

SC

min{k + 1,g} min{k + 1,(} min{k + 1,e}

nfin{k+l,r} min{k+l,r} min{k+l,r}

min{k, g} min{k, t} min{k + 1/2, g}

min{k,r} min{k,r} min{k + 1/2,r}

oc 7 oo

22 L i

3.3. The error estimates. Now we combine the results obtained in the previous subsections.

THEOUEM 3.4. Let u be the exact solution of problem (3.4), (3.5); and let U be the approximation defined

.... (1 of Theoremby (3.9), (3.10) for which conditions (i) (iii) are valid. Consider the convolution kernel t_ f,

3.1. Let each of the components of u(T) be in H'(fh) and let f2o be such that rio + 2supp(K_ e_) CC f_l.

Then, for general regular triangulations and I2t = h s/l_+e) < 1to, we have

IIu(T) - t_ cl * U(T) IIo,_o_ c h°_,

where O, s and C are as in Theorem 3.3 with Ca = C4 IIuoll_,w, and 0 = v/(u + t).

Moreover. if the)riangulation is translation invariant on a neighborhood of the suppar[ of the solution

of the adjoint equation (3.12), (3.13) then, for 121= h,

Ilu(T) ,.,n- i_] *U(T) NO,no_ Ch _,

12



Proof. The first inequality is a direct consequence of Corollary 3.2 and Theorem 3.3. The second

inequality also follows from the above results and from tile fact that if the triangulation is translation

invariant in a neighborhood (of order/2/= h) of the support of the solution of the adjoint problem, then we

have

]]0_1(u - U)(T)[I -_,_0 < C,, ha II O_uo Ilr,v_l.

This completes the proof. ['1

Some important particular cases for which _1 = I (and consequently Dill = I) are collected in tile table

below; these are in fact the estimates we can actually prove. Tile case in which t_t # I remains a challenging

open problem.

TABLE 3.3

Orders of convergence with piecewise polynomials of degree k when the analytical solution u is in C([O, T]; tt;_er( l) ).

triangulations u SG SG with AD DG

general

general

locally invariant

locally invariant

0

2k+2

0

2k+2

Ok 0a 0(k + 1/2)

ok oa 0(k+ 1/2)

k a k + 1/2

2k a 2k+l

4. Proofs.

4.1. The approximation result. In this subsection, for the sake of completeness, we sketch the proof

of Timorem 3.1 following Bramble and Schatz [4].

Consider the following quantity:

o. = II_- t(_ el * U [[o,n0 < OH, l + OH,2,

where

(2)H, 1 : [] It -- K7; t'l -k "tt ][O,_o,

OH,2 = ilI,'J a * (.- U)[[0,_0.

To estimate OH, t, we denote the support of/((v.gl) by 2-, we label the Taylor polynomial of degree u - 1 of

u around y by T_u(y, .), and we put T_u(y, .) = u(.) - T"u(y, .). We then easily deduce that

K_/1 . _(x) = R"u(y, x) - fz I¢_'_l(z) R%(V, x - H z) dz,It(x)

by using the fact that the kernel K_ el reproduces polynomials of degree u - 1 by convolution. For y = x,

the above expression becomes

i "u(x) - g_n .u(z) = - K_,_l(z)R%(x,z - nz)dz,

and we obtain

o.,, < IIKv'gl tlv(_) sup IIR%(-,- - H=)Ilo,_o
zCZ

H" h.V,g 1
<- 7. [I tl*.'(z) I**l_,_0+_z.

13



On applying the triangle inequality to tile expression of K "'tl given by (3.1), we get

]] If"':' IIL,(zl -< Y_ Ik[':' Itt ?//,/,l-s(. _ 7)[l/fl(R d} = E t k_ ':11 = C,,
ffCZ d 2EZ d

sinceII0c1-o(. _ ?)ttL,(_) = 1. This implies that

H" H v
e_1,_< 7 C1lu l.,ao+Hz< _ C1l u I.,a,.

Now, let us sketch tile procedure to estimate Oh,2. Take a set Q1/2 such that, for all H </40,

.-v.t
fi0 + supp(hh ) C _1/2,

-v,t
_1/2+ supp(Kh )C flj.

Then, setting c(x) = u(x) - U(x), we get

o.., -- IIIffi e**_' !to,_o_<c,_,_ IID_'(KH a * e)II-_,n,.,

I_l_<e

where C2 depends solely on rio, ill�2, d, u, and (, by Lemma 4.2 in Bramble and Schatz [4]. This is the

significant step that allows us to pass from the L-%norm to a negative-order Sobolev norm.

Next, we exploit the fact that the kernel K}) cl is a linear colnbination of B-splines given by (3.1); this

is the only place in this proof where properties of B-splines are used. Thus, by the property (3.2) we have

that

where

This implies that

D ° :r.v,:l r -v gl'a at_H *e)= *_/ ' OH_,

/_ov,tl;C_(y) = E _'['tlt/)(tl--a)(Y -- _')" ::

3EZ d

_ .v,(1;oOre_, < C2 _ 11I¢}'iC1;° *O_,cl]-t,.,:= < C2 _F. lit<. IIL,(u._llaT:ll-e,_,.
Iol_<t I_l<t

Finally, since I!-_'_;" IILltR_= IIIC''_;° IIL'(_ < C,, weget

0.,., < C, C_ _ I10_ II-:,_,-
lal<t

This completes the proof of Theorem 3.1.

4.2. The conditions (i)-(iii) for some finite element methods. In this subsection, we justify the

results displayed in Table 3.2.

a. The SG method. Let us begin by considering property (i). For the L2-projeetion, it is well known

that PAl = min{k + 1,t} and that SM = min{k + 1,r} for regular triangulations. Next, let us consider

property (iii). A simple calculation shows that' we can take A c = 0; this allows us to take so, = oc.

For property (ii), we proceed as follows:

/, T

O = .Z {(U,, _ - _()h + B(U, io - X)} dt

/, T

= l {((U - u)t + A(U - u),_o- X)h} dr.
J0

14



Taking X as the L2-projection of c2, we get (ii) with pN -- rain{k, _}, SN = min{k, r} and f_l = I.

The SG with artificial diffusion. For this method, we only have to focus on property (iii).b.

have,

f f0TO = .In {(U,_t)h - B(U,_)} dt = /0(VU, Vc;) dt

-< h_ I1VU [[L-_(0,T;L-'(1))I[ V_ [IL2<0,Tj--(I)_.

We

This means that property (iii) is satisfied with sc = 7.

c. The DG method. For properties (i) and (iii), we proceed as in the two methods discussed above.

The verification of property (ii) requires a more delicate argument. For a function W whose components

are in H lp_r,a_tlRd',II_'_J,_we set. _M W](x) = A • n + I.l"+ (x) + A • _- II'-(x) for every, x E c, where II "=k(x) =

lira_%0 II'(x - z n +) and n =k is orthogonal to the face e of the element K at x. With this notation, we can

write that

/, T

® = L {(Ut,_- X')h + B(U,_o- X)} dt

=[ (Ut+AU,-X')h+E(I.4U],-X)c at,
,/0 eEg

where we obtained the last step after a simple integration by parts; by g we denote the collection of faces c

of the elements/( of the triangulation Th,1.

Now, taking X to be the L"--projection of _2onto .91h = N)_, we get,

}O= (_.dU L_a-X)_ dt

< EII [A U]] I[_,o dt EII _ - x I1_,,0at
eCg eE$

This implies that property (ii) is satisfied with SN = min{k + 1/2, f} for regular triangulations. It remains

to obtain an estimate of the first term on the right; following Johnson and Pitk_ranta [14] or Cockburn [6],

it is easy to prove that (iii) is satisfied with PN = min{k + 1/2, r} and f_ = I.

5. Numerical experiments. In this section, we validate our theoretical results with an emphasis on

the case in which the doubling of the order of convergence is achieved. We also explore the perforInance

of the post-processing technique in situations not predicted by our analysis; thus, we display the L_-errors

in all our experiments, including an example of a linear convection-diffusion equation and an example of a

non-linear convection equation.

We consider the discontinuous Galerkin method with polynomials of degree k (denoted by pt.) and use

a third order Ilunge-Kutta method to discretize in time; the time step ..'St is chosen small enough so that

spatial errors dominate. Results for pl to p4 are shown.

The L _ error measures the maximum numerical error at the six Gaussian points in each element for all

elements. The L -_ error is computed by the six-point Gaussian rule in each element.

Example 5.1. A linear scalar convection equation with smooth solution on the domain I = [0, 2zr):

ut +u, =0, in I x (0, T); _t(x,0) = sin(x) xCI, (5.1)
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with periodic boundary conditions. The errors are computed at T = 12.5 which is about 2 periods in time.

In Table 5.1, we show the numerical errors for this problem. We can clearly see that both the L 2 and

L _ error for pt- elements is of (k + 1)-th order before post-processing and of at least (2k + 1)-th order after

post-processing. This is consistent with our theoretical results.

i"

TABLE 5.1

Example 5.1, ut + u_. = O, smooth solution.

Before postprocessing

mesh L 2 error order L _' error t order
i

pl

10

20 1

4O

8O

160

320

10

20

4O

8O

160

10

2O

4O

5O

3.29E-02 -- 5.81E-02 --

5.63E-03 2.55 1.06E-02 2.45

1.16E-03 __ 2.28. 2.89E-03 !.88

2.72E-04 2.09 8.08E-04

6.68E-05 2.03 2.13E-04

1.66E-05 2.01 5.45E-05

8.63E-04

1.07E-04

1.34E-05

1.67E-06

2.09E-07

3.30E-05

2.06E-06

1.29E-07

5.29E-08

2.86E-03

3.01 3.69E-04

3.00 4.63E-05

3.00 5.78E-06

3.00 7.23E-07

9.59E-05

4.00 6.07E-06

4.00 3.80E-07

4.00 1.56E-07

After postprocessing

L 2 error [ order I Lo¢ error I order

1.84

1.93

1.96

p2

2.95

3.00

3.00

3.00

p3

3.98

4.00

4.00

p4

4.98

4.99

2.97

3.00

3.00

3.00

3.00

3.01E-02

3.84E-03

4.79E-04

5.97E-05

7.45E-06

9.30E-07

2.52E-04

5.96E-06

1.53E-07

4.22E-09

1.27E-10

1.64E-05

7.07E-08

2.91E-10

5.03E-11

1.98E-06

2.20E-09

4.34E- 11

m

' 5.40

5.29

5.18

5.06

4.22E-02

5.44E_03 2.96

6.78E-04 3.01

8.45E-05 3.00

1.05E-05 3.00

1.32E-06 3.00

3.57E-04

8.41E-06 5.41

2.16E-07 5.28

5.97E-09 5.18

1.80E-10 5.06

2.31E-05 --

1,00E-07 7.85

4.15E-10 7.91

7.24E-11 7.83

2.81E-06

3.11E-09 9.82

6.66E-11 9.48

7.85

7.92

7.87

10 1.02E-06 -- 2.30E-06

20 3.21E-08 5.00 7.30E-08 9.82

-- 30 4.23-E--0_9-- 5100 9.66E-09 9.68

In Fig. 5.1, we plot the errors of the numerical solution before and after post-processing for p2 and p3

with 20 elements. We can clearly see that the errors before post-processing are highly oscillator)', and the

post-processing gets rid of the oscillation in the error and greatly reduces its magnitude.

In Fig. 5.2, we plot the errors, in absolute value and in logarithmic scale, of the numerical solution

before and after post-processing for P_', with 10, 20, 40, 80, and 160 elements. We can clearly see that

the post-processed errors are less oscillatory and much smaller in magnitude, and approximately third and

fifth order accuracy for the pre-processed and post-processed errors, respectively, measured by the spacing
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betweentheerrorswhentilenumberofelementsdoubles.

bef_ po&t-_._g (_ I1_) ; and oh, post -pr o¢¢ seir.g (dichld lin=,)

1 2 3 4 5 6

X

P" *1_ 20 ik_e,l=. E_r

be_, po_l-procl_; {_ Ik_) : mr,d a_r pomt-r.mees=_ng (_,,hod toni)

1 2 3 4 5

FIC. 5.1. The errors before and after post-processing for 20 elements: p2 (left) and pa (right).

p2, before post-processing

N.IO

N.2O

N=4o

N.eo

N.fgo

loq

I

L

_o':l

p2, after post-processing

.... i .... i..

1 2

/

I .... [ .... [ , , ,

4 5

N.10

N=20

N.40

Nl.m0

N.le_

FI(J. 5.2. The errors in absolute value and in logarithmic scale, for p2 with N=IO, 20, 40, 80, and 160 elements. Before.

post-processing (left) and after post-processing (right).

Example 5.2. A linear scalar convection diffusion equation with smooth solution on the domain I = [0, 2re):

u,+u. =Uxx, inlx (0, T) u(x,0) =sin(x), xEI, (5.2)

with periodic boundary conditions. The errors are computed at T = 2, using the local discontinuous Galerkin

method [8], with alternating left and right fluxes for u and the auxiliary variable q which approximates u,

(formula (2.9) in [8]).

Although not proven in this paper, we expect the same accuracy result to hoht for the post-processed

solution as in Example 5.1. In Table 5.2, we show the results for this problem. We can clearly see that the

L _ errors for pk elements are of (k + 1)-th order before post-processing and of at least (2k + 1)-th order

after post-processing, both for the solution u and for the auxiliary variable q which approximates u,. The

results for the L 2 errors are similar and are not shown to save space.

Example 5.3. The same linear scalar convection equation (5.1) with the same initial condition, except that

now I = [0, 5). The solution now has a discontinuity at x = 0 (or x = 5) and this discontimdty moves in

time with the characteristic speed 1. We compute the errors at T = 12.5, that is, after 2.5 periods in time.
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mesh

TABLE 5.2

Example 5.2, ut + uz = Uxx, smooth solution.

_ __ Before postprocessing After postprocessing

'/1

L _' error

10 6.74E-03

20 1.82E-03

40 4.68E-04

80 1.19E-04

160 3.00E-05

320 7.52E-06

q for ?Ix

order L _¢ error

-- 5.82E-03

1.89 1.71E-03

1.96 4.56E-04

1.98 1.17E-04

1.99 2.98E-05

1.99 7.50E-06

---_O 3.97E-04 -- 3.38E-04

20 5.01E-05 2.99 4.61E-05

40 6.25E-06 3.00 6.02E-06

80 7.83E-07 3.00 7.68E-07

160 9.78E-08 3.00 9.69E-08

u q for

L '_ error ] order
J

order

p_

1.77

1.91

1.96

1.98

1.99

p2

2.87

2.94

2.97

2.99

pa

3.86

3.95 I

p4

4.94

4.98

1.19E-03

1.34E-04 3.15

1.56E-05 3.05

1.46E-06 3.02

2.32E-07 3.03

2.87E-08 3.01

2.93E-05

5.43E-07 5.75

1.04E-08 5.71

2.19E-10 5.57

5.31E-12 5.37

L _ error ] order

1.18E-03 --

1.41E-04 3.07

1.69E-05 3.06

2.07E-06 3.03

2.57E-07 3.01

3.20E-()8 3.01

2.96E-05

5.46E-07 5.76

1.05E-08 5.70

2.26E-10 5.54

5.63E-12 5.33

10 1.30E-05 -- 1.13E-05 3.09E-06 -- 3.09E-06 --

20 8.23E-07 3.98 7.73E-07 1.32E-08 7.87 1.32E-08 7.87

40 5.14E-08 4.00 4.99E-08 5.31E-11 7.96 5.31E-11 7.96

10 3.11E-07 -- 2.93E-07 3.79E-07 -- 3.80E-07 --

20 9.89E-09 4.97 9.54E-09 4.19E-10 9.82 4.19E-10 9.82
L

30 1.30E-09 5.00 1.27E-09 7.11E-12 10.05 7.11E-12 10.05

Tile discontinuity at this time is located at x = 2.5. The errors shown in Table 5.3 are calculated within

the "smooth region" [0, 1] U [4, 5], at distance 1.5 away fi'om the discontiimity, namely excluding the interval

l<x<4.

The theory in this paper would only guarantee (k + 1)-th order accuracy for P_' elements after post-

processing since our estiinates hold for /)fh = I only and the initial condition displays a discontinuity.

However, Table 5.3 shows that both the L 2 errors and the L _c errors are still at least (2k + 1)-th order

accurate for P_ elements after post-processing. This indicates that it is reasonable to expect that a similar

result with a domain Z)fh excluding the discontinuity should hold, see Fig. 5.4.

In Fig. 5.3 we plot the errors, in absolute value and in logarithmic scale, of the numerical solution

before and after post-processing for P'-, with 10, 20, 40, 80 and 160 elements. We can clearly see that the

post-processed errors are less oscillator), and much smaller in magnitude away from the discontinuity.
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mesh

10

2O

4O

8O

160

320

10

2O

4O

8O

160

TABLE 5.3

Example 5.3, ut + uz = O, discontinuous solution, errors in smooth regions

Before postprocessing

L 2 error order L _° error ! order
[

pl

After postprocessing

L _0error ]order L _c'errOr [order

2.02E-02 --

4.37E-03 2.21 2.15

6.63E-04 i 2.72 3.88

1.58E-04 2.07 3.27

3.92E-05 2.01 3.00

9.80E-06 2.00 3.00

6.46E-02

1.21E-02

1.89E-03

5.24E-04

1.36E-04

3.47E-05

1.08E-02

1.98E-03

2.51E-05

2.91E-06

3.64E-07

1.24E-02

1.03E-03

7.21E-06

1.01E-08

6.32E-03

5.42E-04

4.70E-06

4.53E-03 --

4.96E-04 3.19

8.80E-06 5.82

8.97E-07 3.29

1.12E-07 3.00

10 2.87E-03 -

20 1.97E-04 3.87

40 1.36E-06 7.18

80 3.03E-09 8.81

10 1.93E-03 --

20 9.79E-05 4.30

40 5.86E-07 7.39

-- 1.76E-02

2.41 3.96E-03

2.69 2.69E-04

1.85 2.78E-05

1.94 3.49E-06

1.97 4.37E-07

p2

-- 3.74E-03

2.45 3.02E-04

6.30 4.03E-06

3.11 1.74E-09

3.00 5.09E-11

pa

-- 7.76E-04

3.60 6.91E-06

7.15 3.51E-08

9.47 2.18E-11

p4

-- 1.36E-03

3.54 1.15E-07

6.85 3.46E-11

3.63

6.23

11.18

5.09

6.81

7.62

10.65

13.53

11.70

2.80E-02 --

1.18E-02 1.24

6.77E-04 4.12

4.31E-05 3.97

5.31E-06 3.02

6.63E-07 3.00

1.15E-02

1.07E-03 3.42

2.74E-05 5.29

1.32E-08 11.02

8.75E-11 7.23

1.81E-03

2.92E-05 5.95

1.88E-07 7.27

6.89E-11 11.42

2.91E-03 --

8.37E-07 11.76

2.11E-10 11.96

Example 5.4. A scalar nonlinear Burgers' equation with continuous and discontinuous solutions on tile

domain I = [0, 27r):

(_) 1 + sin(x), x_I; (5.3)ut + u 2 = 0, in I x (0, T); u(x,O) = _ . .
x

with periodic boundary conditions. Tile errors at T = 0.5, when the solution is still smooth, are given in

Table 5.4. It seems that in general, post-processed errors are still smaller, although the asymptotic orders

seem to show up later than for tlle linear case, as the mesh is refined. We remark that the theory in this

paper does not cover this nonlinear problem.

In Fig. 5.5, we plot tile errors of the numerical solution before and after post-processing for p2 and p3

with 20 dements. From Table 5.4 we can see that in both situations the errors after post-processing are

actually larger than tile errors before post-processing. Note in Fig. 5.5 that near the middle region, the

oscillations in the errors are not "uniform", apparently due to nonlinear effects, hence the post-processing

actually gives larger errors. Fortunately, for a larger number of elements the post-processing begins to be

effective and the errors after post-processing do become smaller, see Table 5.4 and the following Fig. 5.6.
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11:Fig. 5.6 we plot the errors, in absolute value and in logarithmic scale: of the numerical solution before

and after post-processing for p2, with 10, 20, 40, 80, 160 and 320 elements. We can clearly see that the

post-processed errors are less oscillatory and much smaller in magnitude, especially for a large number of

elements. However, notice that due to non-linear effects not all oscillations in the errors have been removed

by the post-processing, especially for a large number of elements.

TABLE 5.4

Example 5.._, Burgers' equation with smooth solution.

Before postprocessing

mesh L 2 error I order L ¢¢' error

l0 1.95E-02

20 5.31E-03

40 1.33E-03

80 3.33E-04

160 8.37E-05

320 2.10E-05

1.88

2.00

1.99

1.99

2.00

l o@r
pl

8.87E-02 1 --

2.77E-02 1.68

7.55E-03 1.87

1.95E-03 1.95

4.99E-04 1.97

1.26E-04 1.98

p2
w

10 3.46E-03

20 4.81E-04

40 8.00E-05

80 1.30E-05

160 2.04E-06

-- 320- 3.06E707-

l0 4.33E-04

2O 4.16E-05

4O 2.43E-06

8O 1.46E-07

160 1.03E-08

-- 1.93E-02

2.85 3.57E-03

2.59 6.22E-04

2.62 1.20E-04

2.67 1.98E-05

2.73 3.02E-06

-- 2.24E-03

3.38 2.00E-04

4.10 1.74E-05

4.06 1.04E-06

- 3.82-- _72E:08

10 1.75E-04 -- 8.25E-04

20 4.19E-06 5.39 2.45E-05

40 1.70E-07 4.62 1.04E-06

50--_ -6.45E-08 4.36 4.40E-07

2.43

2.52

2.37

2.61

2.71

pa

After postprocessing

L 2 error I order L _: error order
I

1.37E-02

1.63E-03

1.28E-04

1.03E-05

1.12E-06

1.42E-07

1.12E-02

9.25E-04

3.63E-05

8.43E-07

1.67E-08

3.60E- 10

1.12E-02

8.08E-04

2.06E-05

3.48

3.53

4.07 1.96E-07

.3.95 1.10E-09

p4

-- 1.15E-02

5.07 7.63E-04

4.55 1.48E-05

3.87 3.09E-06

-- 3.99E-02

3.07 6.47E-03

3.67 5.55E-04

3.63 4.17E-05

3.20 4.21E-06

2.98 5.69E-07

2.63

3.54

3.73

3.31

2.89

3.59

4.67

5.43

5.66

5.53

3.37E-02 --

3.47E-03 3.28

1.58E-04 4.46

3.93E-06 5.33

8.51E-08 5.53

1.85E-09 5.52

3.80

5.30

6.72

I 7.47

3.91

5.69

7.03

3.35E-02

3.03E-03 3.46

9.42E-05 5.01

1.01E-06 6.54

5.94E-09 7.41

3.36E-02 --

2.82E-03 3.58

6.82E-05 5.37

1.52E-05 6.74

Next, we compute the solution at T = 2, that is, after the shock has developed. We measure the errors

on the smooth region 0.5rr away from tile discontinuity and show the results in Table 5.5. The codes ran

stably only for p1 and p2; hence only these two cases are shown.

In order to stabilize the algorithm in the presence of shocks, we apply a TVB (total variation bounded)

limiter with M = 3, see [7]. This limiter has no effect on the numerical solution at T = 0.5 when the solution

is still smooth, but allows the scheme to run stably for pa and p4 after the shock develops. We again

2O



mesh

TABLE 5.5

Example 5.,_, Burgers' equation with discontinuous solution.

Before postprocessing

L 2 error order I L _ error order
I

10 8.70E-03

20 3.05E-04

40 1.70E-05

80 3.71E-06

160 8.65E-07

32O 2.17E-07

10 6.26E-03

2O 2.77E-04

40 2.03E-05

80 2.30E-06

160 4.23E-07

32O 6.12E-08

4.83

4.16

2.20

2.10

2.00

4.50

3.77

3.14

2.44

2.79

3.56E-02

1.47E-03

8.14E-05

2.07E-05

4.67E-06

1.19E-06

3.29E-02

1.44E-03

1.68E-04

2.17E-05

4.75E-06

7.77E-07

pl

4.6O

4.18

1.97

2.15

1.97

p2

4.52

3.10

2.95

2.19

2.61

After postprocessing

L 2 error I order I L _ error I order

6.79E-03 --

2.23E-04 4.93

1.09E-05 4.36

1.37E-06 2.99

1.63E-07 3.07

2.05E-08 3.00

1.57E-03

5.47E-05 4.84

6.88E-06 2.99

8.39E-07 3.03

1.16E-07 2.86

1.41E-08 3.04

1.99E-02 --

8.61E-04 4.53

2.25E-05 5.26

2.86E-06 2.97

3.43E-07 3.06

4.31E-08 2.99

7.05E-03 --

1.52E-04 5.54

2.62E-05 2.53

4.61E-06 2.51

7.95E-07 2.54

1.29E-07 2.62

measure the errors on the smooth region 0.5rr away from tile discontinuity and show the result in Table 5.6.

In Fig. 5.7 we plot the errors, in absolute value and in logarithmic scale, of the numerical solution before

and after post-processing for p2 with a TVB limiter, at t = 2, with 10, 20, 40, 80, 160 and 320 (qements. \\),

can clearly see that the post-processed errors are less oscillatory and much smaller in magnitude, especially

for a large number of elements, away fl'om the discontinuity. Again, notice that not all oscillations in the

errors have been removed by the post-processing, especially for a large number of elements, due to non-linear

effects.

Example 5.5. A linear system with a smooth solution in the domain I = [0, 2n):

lut+vz=O {u(x,0) = sin(x)
in I x (0, T), x ¢ I, (5.4)

(vl+u_ 0' v(x,0)=0

with periodic boundary conditions. The errors are computed at T = 12.5 which is about 2 periods in time.

In Table 5.7, we show the results for this problem. The errors are the combined ones of u and v. We can

clearly see that both L 2 and L _ errors for pk elements are (k + 1)-th order before post-processing and at

least (2k + 1)-th order after post-processing. In fact, the errors are very similar to the scalar case in Example

5.1. This is consistent with our theoretical results.

Notice that this example and the next one with discontinuous solution for linear systems indicate that

the method is very suitable for long time simulation of linear systems as the post-processing needs to be

performed only at the final time. Examples include aeroacoustic problems when linear Euler equations must

be solved for a long time to propagate the pressure waves.

Example 5.6. The same linear system (5.4) with the same initial condition, except that nov," 0 < x < 5

and the boundary condition is 5-periodic. The solution nov,' has a discontinuity at x = 0 (or x = 5) and this
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TABLE 5.6

Ezample 5.,_, Burgers' equation with discontinuous solution. TVB limiters.

Before postprocessingL 2 error l or[ter_ L _ error I order

_ i0 126E-03
20 1.16E-04

40 1.72E-05

80 3.72E-06

160 8.73E-07

320 2.17E-07

3.44

2.76

2.20

2.09

2.01

m

10 1.03E-02 --

20 -4.22E-04- 4:60

4.44E-03

4.38E-04

8.33E-05

2.08E-05

4.75E-06

1.19E-06

5.83E-02

pl

3.34

2.40

2.00

2.13

2.00

p2.

3.36E-03 4.12

40 2.23E-05

80 2.29E-06

160 4.21E-07

320 6.10E-08

4.24

3.28

2.44

2.79

10 9.98E-04

20 1.47E-04 2.76

40 4.92E-07 8.22

80 8.58E-10 9.16

After post processing

L 2 error t order L _ error order
I

1.99E-04 4.08

2.16E-05 3.20

4.72E-06 2.19

7.75E-07 2.61

pa

6.64E-03 --

1.38E-03 2.20

5.43E-06 7.99

1.43E-08 8.57

• },4

9.90E-(}1

2.16E-01 2.20

2.25E-02 3.26

6.11E-07 15.17

m

3.33

3.22

2.99

3.07

3.00

1.02E-03 ]

1.01E-04

1.09E-05

1.37E-06

1.63E-07

2.05E-08

1.99E-03

5.32E-05

6.87E-06

8.39E-07

1.16E-07

1.41E-08

3.45E-03

9.35E-06

2.92E-08

3.71E-10

2.28E-01

5.28E-02

3.88E-04

1.46E-08

3.55

3.11

2.98

3.06

2.99

2.28E-03

1.94E-04

2.26E-05

2.87E-06

I 3.44E-07

4.32E-08

7.66E-03

5.22 1.50E-04 5.68

2.95 2.53E-05 2.53

3.03 4.61E-06 2.50

2.86 7.95E-07 2.54

3.04 1.29E-07 2.62

-- 1.35E-02 --

8.52 5.18E-05 8.03

8.32 2.08E-07 7.96

6.30 8.73E-10 7.90

10 3.86E-01 --

20 1.08E-01 1.84 2.11

-- 40- 1.89E-03 5.83 7.09

-- 80 8.08E-08 14.52 14.70

3.78E-01 --

1.34E-01 1.50

3.97E-03 5.07

7.42E-08 15.71

discontinuity moves in time with the characteristic speeds -4-1. We compute the errors at t = 12.5, after 2.5

periods in time. Tiw two discontinuities at this tii_ie are both located at x = 2.5. The errors shown in Table

5.8 are Calculated within tile "smooth region" that lies a distance 1.5 away from the discontinuities, namely

exctudingthe interval 1 < x < 4. : :::

The theory in this paper would only gamrailtee (k + 1)-th order accuracy for P_ elements after post-

processing, since wlmn we take D_l = I, the initial condition has a discontinuity in this set. However, Table

5.8 shows that both the L 2 errors and the L _ errors are still at least (2k + 1)-th order accurate for pk

elements after post-processing. : =

In fact, the behavior of the errors is very similar to that observed in the scalar case in Example 5.3. This

is not really surprising since our linear system is equivalent to the following two decoupled scalar equations:

(u - V)t - (u - V)x = 0 in I x (O,T), _(u- v)(x,O) = sin(x) x C I.
(u + v)t + (u + v)x 0 [ (u + v)(x, O) = sin(x)
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TABLE 5.7"

Example 5.5, linear system with smooth solution

Before postprocessing

mesh L 2 error order k s error

10 2.33E-02 --

20 3.98E-03 2.55

40 8.20E-04 2.28

80 1.92E-04 2.09

160 4.72E-05 2.03

320 1.17E-05 2.01

5.20E-02

8.55E-03

1.89E-03

4.77E-04

1.20E-04

2.99E-05

1.67E-03

2.08E-04

10

2O

4O

8O

160

6.10E-04

7.57E-05 3.01

9.46E-06 3.00

1.18E-06 3.00

1.48E-07 3.00

2.33E-05

1.46E-06 4.00

9.13E-08 4.00

3.74E-08 4.00

2.60E-05

After postprocessing

L 2 error [order I c_' error order

10

20

40

50

10 7.24E-07 --

20 2.27E-08 5.00
30 2.99E-09 5.00

order

p1

-- 2.13E-02 l

2.60 2.72E-03

2.18 3.39E-04

1.98 4.23E-05

2.00 5.28E-06

2.00 6.59E-07

p2

-- 1.78E-04

3.00 4.22E-06

3.00 1.09E-07

3.00 3.11E-09

3.00 8.95E-11

p3

-- 1.16E-05

3.99 5.00E-08

3.99 2.13E-10

4.01 3.94E-11

p4

-- 1.40E-06

4.99 1.56E-09

4.99 3.06E-11

2.97

3.00

3.00

3.00

3.00

4.16E-02 --

5.36E-03 2.96

6.74E-04 2.99

8.43E-05 3.00

1.05E-05 3.00

1.31E-06 3.00

-- 3.53E-04 --

5.40 8.42E-06 5.39

5.28 2.17E-07 5.28

5.13 6.20E-09 5.13

5.12 1.77E-10 5.13

3.24E-06

4.06E-07

5.73E-05 -- 2.30E-05 --

3.61E-06 7.85 9.98E-08 7.85

2.27E-07 7.88 4.25E-10 7.88

9.29E-08 7.56 7.84E-11 7.57

1.37E-06 -- 2.79E-06 --

4.33E-08 9.82 3.11E-09 9.81

5.72E-09 9.69 6.16E-11 9.67

As a consequence, the domain of dependence Dill does not include the discontinuity of the initial condition;

see Fig. 5.8 (top).

Oil the other hand, it is interesting to point out that this doubling of the order of accuracy does not

take place for the problem,

?/t -- _x _ V
V t -4- V x -7- --tl

in I x (0, T), ['{u(x' 0) = sin(x) x C I, (5.5)

[,,,(/, 0) o

with periodic boundary conditions, since nov,' the two scalar equations associated with the diagonalization of

the system are coupled through zero-order terms; as a consequence, the domain of dependence Dl_l always

includes the discontinuity of tile initial condition; see Fig 5.8 (bottom). This is the example treated in

the early work of Majda and Osher and [18] and Majda, McDonough and Osher [17]. Due to this lack of

regularity of the initial condition on Dial, post-processing with a kernel of support of order h does not yield

any significant improvement; a kernel of support of order almost one is required, as predicted by our main

theorem; see also Mock and Lax [19].
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TABLE 5.8

Example 5.6, linear system with discontinuous solution

nlesh

io1
20

40

80

160

320

Before postprocessing

or or orrorIordor
p1

1.49E-02 -- 4.00E-02 l
m

3,19E-03 2.22 9.35E-03

4.76E-04 2.74_.: 1.37E-03

1.13E-04 2.08 3.04E-04

2.78F_._-05 2.02 7.59E-05

6.94E-06 2.00 1.90E-05

10 3.41E-03 6.93E-03

20 3.58E-04 3.25 1.30E-03

40 6.30E-06 5.83 2.42E-05

80 6.33E-07 3.32 1.64E-06

160 7.91E-08 3.00 2.05E-07

After postl)rocessing

L2 error ordor I L error [ order
I t

I 1.29E-02 I

2.10 2.79E-03

2.78 1.85E-04

2.17 1.99E-05

2.00 I 2.48E-06

2.00 3.09E-07

p2

-- 2.65E-03

2.42 2.22E-04

5.74 2.85E-06

3.88 1.23E-09

3.00 3,34E-11

p3

10 2.03E-03 6.43E-03 5.35E-04

20 1.40E-04 3.86 5.41E-04 3.57 4.92E-06

40 9.66E-07 7.18 3.64E-06 7.21 2.50E-08

80 2.14E-09 8.82 6.00E-09 9.25 1.34E-11

p4

10 1.38E-03 3.26E-03 9.61E-04

20 6.92E-05 4.32 2.72E-04 3.58 8.09E-08

40 4.14E-07 7.39 2.36E-06 6.85 2.42E-11

....i 4"27E-02 l

2.21 7.69E-03

3.91 4.82E-04

3.22 4.28E-05

3.00 5.31E-06

3.00 6.63E-07

- 9.29E-03

3.58 6AOE-04

6.28 1.39E-05
L

11.17 7.52E-09

5.20 5.54Eoll

6.76

7.62

10.87

13.54

11.71

1.77E-03

2.27E-05

9.60E-08

4.89E-11

2.90E-03

6.31E-07

1.03E--10

L

2.47

3.99

3.49

3.01

3.00

3.86

5.52

10.86

7.08

6.28

7.89

10.94

12.17

12.58

6. Extensions and concluding remarks. In this paper, we have shown how to enhance tile approxi-

mation given by a finite element method for linear hyperbolic equations by applying a simple post-processing

at the very end of the computations, our theoretical results cai1 be easily extended to the case in which the

matrices Aj, j - 0,.. , d, are very smooth flmctions of (x, t). To do that, it is enough to mimic the induction

argument presented by Bramble and Schatz in [4].

The role of negative-order error estimates is crucial since it is the analytical tool that captures the

ocillatory nature of the error. For these negative-order norms of the error, upper bounds were obtained

which depend on a global norm of the initial data. Our numerical results suggest, however, that the3" should

depend only on a local norm of the initial data. In fact, a result of this type was obtained in 1998 for finite

difference schemes by Engquist and SjSgreen [10]. To obtain such a result for, say, the discontinuous Galerkin

method is an challenging open problem.

Finally, let us end by pointing out that our numerical results seem to indicate that the post-processing

has a positive impact on the quality of the approximate solution even if the problem is non-linear. A

theoretical analysis of this case is yet another important open problem.

7
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p2, before post-processing P_, after post-processing

FIC. 5.3. The errors in absolute value and in logarithmic scale, for p2 with N=IO, 20 40, 80 and 160 elements. Before

post-pT_ocessing (left) and after post-processing (right).
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Fic. 5.4. Sketch o/the domain of smoothness f_o o/the exact solution, the domain f21 and its corresponding domain of

dependence T_f_t. The pattern between the discontinuities t = x and t = x - 5 should be repeated periodically.
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FIG. 5.5. The errors before and after post-processing for the smooth solution of Burgers equation and 20 elements: P'-

(left) and p3 (right).
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Burgers's equation, t=O.5 (smooth),
P', before post-processing

Burgprs's equation, t=0.5 (smooth),
P=, after post-processing

1

l

FIG. 5.6. The errors in absotutc value and in logarithmic scale,/or I "2 with N=20, /_0, 80, 150 and 320 elements. Smooth

solution of Burgers equation. Befor_ post-processing (left) and afte'r post-processing (right).

Burg,ers's equation, t=2 (non-smooth),
P', before post-processing

Burg,ers's equation, t=2 (non-smooth),
P', after post-processing

FIC. 5.7. The errors in absolute value and in logarithmic scale, for p2 with N=IO, 20, ,_0, 80, 160 and 320 elements.

Discontinuous solution of Burgers equation. Before post-processing (left) and after post-processing (right).
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0

T _

0

F_C. 5.8. The domain of smoothness of u(T), f_o, the domain f_l DD f_o and its corresponding domain of dependence

Dftl for the system (5.4) (top) and the system (5.5) (bottom}. Note the discontinuity curves t = Izl.
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